Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P
نویسندگان
چکیده
Genome mining of the mithramycin producer Streptomyces argillaceus ATCC 12956 revealed 31 gene clusters for the biosynthesis of secondary metabolites, and allowed to predict the encoded products for 11 of these clusters. Cluster 18 (renamed cluster arp) corresponded to a type I polyketide gene cluster related to the previously described coelimycin P1 and streptazone gene clusters. The arp cluster consists of fourteen genes, including genes coding for putative regulatory proteins (a SARP-like transcriptional activator and a TetR-like transcriptional repressor), genes coding for structural proteins (three PKSs, one aminotransferase, two dehydrogenases, two cyclases, one imine reductase, a type II thioesterase, and a flavin reductase), and one gene coding for a hypothetical protein. Identification of encoded compounds by this cluster was achieved by combining several strategies: (i) inactivation of the type I PKS gene arpPIII; (ii) inactivation of the putative TetR-transcriptional repressor arpRII; (iii) cultivation of strains in different production media; and (iv) using engineered strains with higher intracellular concentration of malonyl-CoA. This has allowed identifying six new alkaloid compounds named argimycins P, which were purified and structurally characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. Some argimycins P showed a piperidine ring with a polyene side chain (argimycin PIX); others contain also a fused five-membered ring (argimycins PIV-PVI). Argimycins PI-PII showed a pyridine ring instead, and an additional N-acetylcysteinyl moiety. These compounds seem to play a negative role in growth and colony differentiation in S. argillaceus, and some of them show weak antibiotic activity. A pathway for the biosynthesis of argimycins P is proposed, based on the analysis of proposed enzyme functions and on the structure of compounds encoded by the arp cluster.
منابع مشابه
New Insights into the Biosynthesis Pathway of Polyketide Alkaloid Argimycins P in Streptomyces argillaceus
Argimycins P are a recently identified family of polyketide alkaloids encoded by the cryptic gene cluster arp of Streptomyces argillaceus. These compounds contain either a piperideine ring, or a piperidine ring which may be fused to a five membered ring, and a polyene side chain, which is bound in some cases to an N-acetylcysteine moiety. The arp cluster consists of 11 genes coding for structur...
متن کاملCloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumor polyketide mithramycin.
Two genes (mtmD and mtmE) were cloned and sequenced from the mithramycin producer Streptomyces argillaceus. Comparison with proteins in databases and enzymatic assays after expression in Escherichia coli showed that they encode a glucose-1-phosphate:TTP thymidylyl transferase and a TDP-D-glucose 4,6-dehydratase, respectively. The mtmD gene was inactivated by gene replacement, generating a nonpr...
متن کاملDraft Genome Sequence of an Anthracimycin Producer, Streptomyces sp. TP-A0875
Here, we report the draft genome sequence of an anthracimycin producer, Streptomyces sp. TP-A0875. The genome contains at least two type I polyketide synthase (PKS) gene clusters, two type II PKS gene clusters, and three nonribosomal peptide synthetase gene clusters. The gene cluster for anthracimycin biosynthesis was identified based on the PKS domain organization.
متن کاملThioester reduction and aldehyde transamination are universal steps in actinobacterial polyketide alkaloid biosynthesis.
Actinobacteria produce a variety of polyketide alkaloids with unusual structures. Recently, it was shown that a type I modular polyketide synthase (PKS) is involved in the assembly of coelimycin P1, a polyketide alkaloid produced by Streptomyces coelicolor M145. However, the mechanisms for converting the product of the PKS to coelimycin P1 remain to be elucidated. Here we show that the C-termin...
متن کاملGenome mining reveals the biosynthetic potential of the marine-derived strain Streptomyces marokkonensis M10
Marine streptomycetes are rich sources of natural products with novel structures and interesting biological activities, and genome mining of marine streptomycetes facilitates rapid discovery of their useful products. In this study, a marine-derived Streptomyces sp. M10 was revealed to share a 99.02% 16S rDNA sequence identity with that of Streptomyces marokkonensis Ap1T, and was thus named S. m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017